import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons;
import core.bitop;
 
class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }
 
bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }
 
int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }
 
 
struct ModInt(uint M_) {
  import std.conv : to;
  alias M = M_;
  uint x;
  this(ModInt a) { x = a.x; }
  this(uint x_) { x = x_ % M; }
  this(ulong x_) { x = x_ % M; }
  this(int x_) { x = ((x_ %= cast(int)(M)) < 0) ? (x_ + cast(int)(M)) : x_; }
  this(long x_) { x = cast(uint)(((x_ %= cast(long)(M)) < 0) ? (x_ + cast(long)(M)) : x_); }
  ref ModInt opAssign(T)(inout(T) a) if (is(T == uint) || is(T == ulong) || is(T == int) || is(T == long)) { return this = ModInt(a); }
  ref ModInt opOpAssign(string op, T)(T a) {
    static if (is(T == ModInt)) {
      static if (op == "+") { x = ((x += a.x) >= M) ? (x - M) : x; }
      else static if (op == "-") { x = ((x -= a.x) >= M) ? (x + M) : x; }
      else static if (op == "*") { x = cast(uint)((cast(ulong)(x) * a.x) % M); }
      else static if (op == "/") { this *= a.inv(); }
      else static assert(false);
      return this;
    } else static if (op == "^^") {
      if (a < 0) return this = inv()^^(-a);
      ModInt b = this, c = 1U;
      for (long e = a; e; e >>= 1) { if (e & 1) c *= b; b *= b; }
      return this = c;
    } else {
      return mixin("this " ~ op ~ "= ModInt(a)");
    }
  }
  ModInt inv() const {
    uint a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const q = a / b; const c = a - q * b; a = b; b = c; const w = y - cast(int)(q) * z; y = z; z = w; }
    assert(a == 1); return ModInt(y);
  }
  ModInt opUnary(string op)() const {
    static if (op == "+") { return this; }
    else static if (op == "-") { ModInt a; a.x = x ? (M - x) : 0U; return a; }
    else static assert(false);
  }
  ModInt opBinary(string op, T)(T a) const { return mixin("ModInt(this) " ~ op ~ "= a"); }
  ModInt opBinaryRight(string op, T)(T a) const { return mixin("ModInt(a) " ~ op ~ "= this"); }
  bool opCast(T: bool)() const { return (x != 0U); }
  string toString() const { return x.to!string; }
}
 
enum MO = 998244353;
alias Mint = ModInt!MO;
 
enum LIM = 310;
Mint[] inv, fac, invFac;
void prepare() {
  inv = new Mint[LIM];
  fac = new Mint[LIM];
  invFac = new Mint[LIM];
  inv[1] = 1;
  foreach (i; 2 .. LIM) {
    inv[i] = -((Mint.M / i) * inv[cast(size_t)(Mint.M % i)]);
  }
  fac[0] = invFac[0] = 1;
  foreach (i; 1 .. LIM) {
    fac[i] = fac[i - 1] * i;
    invFac[i] = invFac[i - 1] * inv[i];
  }
}
Mint binom(long n, long k) {
  if (n < 0) {
    if (k >= 0) {
      return (-1)^^(k & 1) * binom(-n + k - 1, k);
    } else if (n - k >= 0) {
      return (-1)^^((n - k) & 1) * binom(-k - 1, n - k);
    } else {
      return Mint(0);
    }
  } else {
    if (0 <= k && k <= n) {
      assert(n < LIM);
      return fac[cast(size_t)(n)] * invFac[cast(size_t)(k)] * invFac[cast(size_t)(n - k)];
    } else {
      return Mint(0);
    }
  }
}
 
 
void main() {
  prepare;
  auto S1 = new Mint[][](LIM, LIM);
  foreach (n; 0 .. LIM) {
    S1[n][0] = 0;
    S1[n][n] = 1;
    foreach (k; 1 .. n) {
      S1[n][k] = S1[n - 1][k - 1] + (n - 1) * S1[n - 1][k];
    }
  }
 
  try {
    for (; ; ) {
      const N = readInt();
      auto P = new int[N];
      foreach (i; 0 .. N) {
        P[i] = readInt() - 1;
      }
      auto Q = new int[N];
      foreach (i; 0 .. N) {
        Q[i] = readInt() - 1;
      }
 
      // # cycles of q * p^-1
      auto to = new int[2 * N];
      auto fr = new int[2 * N];
      to[] = -1;
      fr[] = -1;
      void ae(int u, int v) {
    	write("addedge ",u+1);
    	write(" ",v+1);
    	writeln;
        to[u] = v;
        fr[v] = u;
      }
      foreach (i; 0 .. N) {
        if (~P[i]) ae(N + P[i], i);
        if (~Q[i]) ae(i, N + Q[i]);
      }
 
      auto vis = new bool[2 * N];
      int[2][2] cnt;
      foreach (u; 0 .. 2 * N) {
        if (!vis[u] && !~fr[u]) {
          int v = u;
          write("u=",u+1);
          for (; ; v = to[v]) {
            vis[v] = true;
            write(" ",v+1);
            if (!~to[v]) {
              break;
            }
          }
          writeln;
          ++cnt[u / N][v / N];
        }
      }
      int cyc;
      foreach (u; 0 .. 2 * N) {
        if (!vis[u]) {
          for (int v = u; ; ) {
            vis[v] = true;
            if ((v = to[v]) == u) {
              break;
            }
          }
          ++cyc;
        }
      }
       writeln("cnt = ", cnt);
      writeln("cyc = ", cyc);
 
      assert(cnt[0][0] == cnt[1][1]);
 
      /*
        (00 (10)* 11 (01)*)*
        (01)*
        (10)*
        
        (00 (10)* 11) or 01: cnt[0][0] + cnt[0][1]
        10: cnt[1][0] - j
      */
      // nums[k] := # ways for k cycles (10)*
      auto nums = new Mint[N + 1];
      foreach (j; 0 .. cnt[1][0] + 1) {
        foreach (k; 0 .. cnt[1][0] - j + 1) {
          nums[k] += fac[cnt[1][0]] * invFac[cnt[1][0] - j] * binom(j + cnt[0][0] - 1, j) * S1[cnt[1][0] - j][k];
        }
      }
      debug {
        writeln("nums = ", nums);
      }
 
      auto ans = new Mint[N + 1];
      foreach (k; 0 .. N + 1) foreach (l; 0 .. N + 1) {
        if (N - k - l - cyc >= 0) {
          ans[N - k - l - cyc] += S1[cnt[0][0] + cnt[0][1]][k] * nums[l];
        }
      }
      ans[] *= fac[cnt[0][0]];
 
      foreach (k; 0 .. N) {
        if (k > 0) write(" ");
        write(ans[k]);
      }
      writeln;
    }
  } catch (EOFException e) {
  }
}