#include <bits/stdc++.h>
using namespace std;
// Global vector to hold zebra-like numbers (coins)
vector<unsigned long long> coins;
// Precompute zebra-like numbers up to 1e18.
// A zebra-like number is of the form: 1, 5, 21, 85, ...
// where coin = coin*4 + 1 starting from coin = 1.
void precomputeCoins(){
coins.clear();
unsigned long long limit = 1000000000000000000ULL; // 1e18
unsigned long long coin = 1;
while(coin <= limit){
coins.push_back(coin);
if(coin > (limit - 1) / 4) break;
coin = coin*4 + 1;
}
// For our DP we want coins in descending order.
reverse(coins.begin(), coins.end());
}
// Given an integer N, compute its representation in our coin system
// (digits in the greedy algorithm). The vector "digits" corresponds to the
// coins in the global 'coins' vector.
vector<int> getDigits(unsigned long long N) {
vector<int> digits;
for(auto coin : coins){
int d = 0;
if(N >= coin){
d = N / coin; // d will be <= 3 due to the properties of coins.
N %= coin;
}
digits.push_back(d);
}
return digits;
}
// We'll perform digit-DP.
// dpRec(pos, tight, curSum, target) returns the number of ways to choose
// digits from position 'pos' onward (positions correspond to coins in descending order)
// so that the overall digit sum equals 'target'. 'tight' indicates whether we are
// still following the limit given by the representation of N.
// Our state parameters: pos (index in digit array), tight (0 or 1), curSum.
// Maximum positions m is at most ~32 and maximum curSum is at most 100.
long long dpMemo[70][2][200];
bool dpComputed[70][2][200];
long long dpRec(const vector<int>& limitDigits, int pos, int tight, int curSum, int target) {
int m = limitDigits.size();
if(pos == m){
return (curSum == target) ? 1LL : 0LL;
}
if(curSum > target) return 0LL; // prune if sum exceeds target.
if(dpComputed[pos][tight][curSum])
return dpMemo[pos][tight][curSum];
long long ways = 0;
// Determine the maximum digit allowed in this position.
int up = (tight ? limitDigits[pos] : 3);
for(int d = 0; d <= up; d++){
int ntight = (tight && (d == up)) ? 1 : 0;
ways += dpRec(limitDigits, pos+1, ntight, curSum + d, target);
}
dpComputed[pos][tight][curSum] = true;
dpMemo[pos][tight][curSum] = ways;
return ways;
}
// countUpTo(N, k) counts the number of positive integers in [1, N] whose zebra value equals k.
long long countUpTo(unsigned long long N, int k) {
if(N < 0) return 0; // not needed since N is unsigned.
vector<int> digits = getDigits(N);
memset(dpComputed, 0, sizeof(dpComputed));
long long res = dpRec(digits, 0, 1, 0, k);
// Our DP includes the representation of 0 (all digits 0) when k==0.
// Since we want only positive integers, subtract the count for 0.
if(k == 0) res -= 1;
return res;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
precomputeCoins();
int t;
cin >> t;
while(t--){
unsigned long long l, r, kULL;
cin >> l >> r >> kULL;
// Note: For numbers up to 1e18, the maximum zebra value is at most 3*m,
// where m is the number of coins used (at most ~32). If k is larger than that,
// no number in [l, r] can have zebra value k.
int m = coins.size();
if(kULL > (unsigned long long)(3 * m)){
cout << 0 << "\n";
continue;
}
int k = (int) kULL;
long long ans = countUpTo(r, k) - countUpTo(l - 1, k);
cout << ans << "\n";
}
return 0;
}