#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long int
const int MOD = 1000000007;
const int MOD2 = 998244353;
const int INF = LLONG_MAX / 2;
const int MAXN = 100000;
int primes[1000000];
void seive() {
fill(primes, primes + 1000000, 1);
primes[0] = primes[1] = 0;
for (int i = 2; i * i < 1000000; i++) {
if (primes[i]) {
for (int j = i * i; j < 1000000; j += i) {
primes[j] = 0;
}
}
}
}
bool isPrime(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
int gcd(int a, int b) {
if (a == 0) return b;
return gcd(b % a, a);
}
int power(int a, int b, int mod) {
int res = 1;
a %= mod;
while (b > 0) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
// nCr % MOD for n < MOD
int nCrModP(int n, int r) {
if (r > n) return 0;
if (r == 0 || r == n) return 1;
int numerator = 1, denominator = 1;
for (int i = 0; i < r; i++) {
numerator = (numerator * (n - i)) % MOD;
denominator = (denominator * (i + 1)) % MOD;
}
return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
}
// Lucas's Theorem
int lucas(int n, int r) {
if (r == 0) return 1;
return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
}
void solve() {
int n;
cin>>n;
int A[n];
for(int i = 0 ; i<n ; i++){
cin>>A[i];
}
int start = 0,end = n-1;
int cnt = 0;
bool reverse1 = false;
int score1 = 0,score2=0;
int ele = 0;
while(start<=end){
if(cnt%2==0){
if(reverse1==false){
score1 += A[start];
ele = A[start];
start++;
}
else{
score1 += A[end];
ele = A[end];
end--;
}
}
else{
if(reverse1==false){
score2 += A[start];
ele = A[start];
start++;
}
else{
score2 += A[end];
ele = A[end];
end--;
}
}
if(ele%2==0){
if(reverse1==false){
reverse1 = true;
}
else{
reverse1 = false;
}
}
cnt++;
}
cout<<score1-score2<<endl;
}
signed main() {
ios::sync_with_stdio(false); cin.tie(NULL);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}
I2luY2x1ZGU8Yml0cy9zdGRjKysuaD4KdXNpbmcgbmFtZXNwYWNlIHN0ZDsKI2RlZmluZSBlbmRsICdcbicKI2RlZmluZSBpbnQgbG9uZyBsb25nIGludApjb25zdCBpbnQgTU9EID0gMTAwMDAwMDAwNzsKY29uc3QgaW50IE1PRDIgPSA5OTgyNDQzNTM7CmNvbnN0IGludCBJTkYgPSBMTE9OR19NQVggLyAyOwpjb25zdCBpbnQgTUFYTiA9IDEwMDAwMDsKaW50IHByaW1lc1sxMDAwMDAwXTsKCnZvaWQgc2VpdmUoKSB7CiAgICBmaWxsKHByaW1lcywgcHJpbWVzICsgMTAwMDAwMCwgMSk7CiAgICBwcmltZXNbMF0gPSBwcmltZXNbMV0gPSAwOwogICAgZm9yIChpbnQgaSA9IDI7IGkgKiBpIDwgMTAwMDAwMDsgaSsrKSB7CiAgICAgICAgaWYgKHByaW1lc1tpXSkgewogICAgICAgICAgICBmb3IgKGludCBqID0gaSAqIGk7IGogPCAxMDAwMDAwOyBqICs9IGkpIHsKICAgICAgICAgICAgICAgIHByaW1lc1tqXSA9IDA7CiAgICAgICAgICAgIH0KICAgICAgICB9CiAgICB9Cn0KCmJvb2wgaXNQcmltZShpbnQgbikgewogICAgaWYgKG4gPD0gMSkgcmV0dXJuIGZhbHNlOwogICAgZm9yIChpbnQgaSA9IDI7IGkgKiBpIDw9IG47IGkrKykgewogICAgICAgIGlmIChuICUgaSA9PSAwKSByZXR1cm4gZmFsc2U7CiAgICB9CiAgICByZXR1cm4gdHJ1ZTsKfQoKaW50IGdjZChpbnQgYSwgaW50IGIpIHsKICAgIGlmIChhID09IDApIHJldHVybiBiOwogICAgcmV0dXJuIGdjZChiICUgYSwgYSk7Cn0KCmludCBwb3dlcihpbnQgYSwgaW50IGIsIGludCBtb2QpIHsKICAgIGludCByZXMgPSAxOwogICAgYSAlPSBtb2Q7CiAgICB3aGlsZSAoYiA+IDApIHsKICAgICAgICBpZiAoYiAmIDEpIHJlcyA9IHJlcyAqIGEgJSBtb2Q7CiAgICAgICAgYSA9IGEgKiBhICUgbW9kOwogICAgICAgIGIgPj49IDE7CiAgICB9CiAgICByZXR1cm4gcmVzOwp9CgovLyBuQ3IgJSBNT0QgZm9yIG4gPCBNT0QKaW50IG5Dck1vZFAoaW50IG4sIGludCByKSB7CiAgICBpZiAociA+IG4pIHJldHVybiAwOwogICAgaWYgKHIgPT0gMCB8fCByID09IG4pIHJldHVybiAxOwoKICAgIGludCBudW1lcmF0b3IgPSAxLCBkZW5vbWluYXRvciA9IDE7CiAgICBmb3IgKGludCBpID0gMDsgaSA8IHI7IGkrKykgewogICAgICAgIG51bWVyYXRvciA9IChudW1lcmF0b3IgKiAobiAtIGkpKSAlIE1PRDsKICAgICAgICBkZW5vbWluYXRvciA9IChkZW5vbWluYXRvciAqIChpICsgMSkpICUgTU9EOwogICAgfQogICAgcmV0dXJuIChudW1lcmF0b3IgKiBwb3dlcihkZW5vbWluYXRvciwgTU9EIC0gMiwgTU9EKSkgJSBNT0Q7Cn0KCi8vIEx1Y2FzJ3MgVGhlb3JlbQppbnQgbHVjYXMoaW50IG4sIGludCByKSB7CiAgICBpZiAociA9PSAwKSByZXR1cm4gMTsKICAgIHJldHVybiAobHVjYXMobiAvIE1PRCwgciAvIE1PRCkgKiBuQ3JNb2RQKG4gJSBNT0QsIHIgJSBNT0QpKSAlIE1PRDsKfQp2b2lkIHNvbHZlKCkgewogICAgaW50IG47CiAgICBjaW4+Pm47CiAgICBpbnQgQVtuXTsKICAgIGZvcihpbnQgaSA9IDAgOyBpPG4gOyBpKyspewogICAgICAgIGNpbj4+QVtpXTsKICAgIH0KICAgIGludCBzdGFydCA9IDAsZW5kID0gbi0xOwogICAgaW50IGNudCA9IDA7CiAgICBib29sIHJldmVyc2UxID0gZmFsc2U7CiAgICBpbnQgc2NvcmUxID0gMCxzY29yZTI9MDsKICAgIGludCBlbGUgPSAwOwogICAgd2hpbGUoc3RhcnQ8PWVuZCl7CiAgICAgICBpZihjbnQlMj09MCl7CiAgICAgICAgICAgaWYocmV2ZXJzZTE9PWZhbHNlKXsKICAgICAgICAgICAgICAgc2NvcmUxICs9IEFbc3RhcnRdOwogICAgICAgICAgICAgICBlbGUgPSBBW3N0YXJ0XTsKICAgICAgICAgICAgICAgc3RhcnQrKzsKICAgICAgICAgICB9CiAgICAgICAgICAgZWxzZXsKICAgICAgICAgICAgICAgc2NvcmUxICs9IEFbZW5kXTsKICAgICAgICAgICAgICAgZWxlID0gQVtlbmRdOwogICAgICAgICAgICAgICBlbmQtLTsKICAgICAgICAgICB9CiAgICAgICB9CiAgICAgICBlbHNlewogICAgICAgICAgIGlmKHJldmVyc2UxPT1mYWxzZSl7CiAgICAgICAgICAgICAgIHNjb3JlMiArPSBBW3N0YXJ0XTsKICAgICAgICAgICAgICAgZWxlID0gQVtzdGFydF07CiAgICAgICAgICAgICAgIHN0YXJ0Kys7CiAgICAgICAgICAgfQogICAgICAgICAgIGVsc2V7CiAgICAgICAgICAgICAgIHNjb3JlMiArPSBBW2VuZF07CiAgICAgICAgICAgICAgIGVsZSA9IEFbZW5kXTsKICAgICAgICAgICAgICAgZW5kLS07CiAgICAgICAgICAgfQogICAgICAgfQogICAgICAgaWYoZWxlJTI9PTApewogICAgICAgICAgIGlmKHJldmVyc2UxPT1mYWxzZSl7CiAgICAgICAgICAgICAgcmV2ZXJzZTEgPSB0cnVlOwogICAgICAgICAgIH0KICAgICAgICAgICBlbHNlewogICAgICAgICAgICAgIHJldmVyc2UxID0gZmFsc2U7CiAgICAgICAgICAgfQogICAgICAgfQogICAgICAgY250Kys7CiAgICB9CiAgICBjb3V0PDxzY29yZTEtc2NvcmUyPDxlbmRsOwp9CnNpZ25lZCBtYWluKCkgewogICAgaW9zOjpzeW5jX3dpdGhfc3RkaW8oZmFsc2UpOyBjaW4udGllKE5VTEwpOwogICAgaW50IHQ7CiAgICBjaW4gPj4gdDsKICAgIHdoaWxlICh0LS0pIHsKICAgICAgICBzb2x2ZSgpOwogICAgfQogICAgcmV0dXJuIDA7Cn0K