program QuadraticFit;
uses
SysUtils, Math;
const
N = 25; // 5x5 точек данных
type
TMatrix = array[1..6, 1..7] of Double;
TVector = array[1..6] of Double;
procedure SolveLinearSystem(var Matrix: TMatrix; var Solution: TVector);
var
i, j, k, m: Integer;
Temp: Double;
begin
// Метод Гаусса с выбором главного элемента
for k := 1 to 6 do
begin
// Выбор главного элемента
m := k;
for i := k+1 to 6 do
if Abs(Matrix[i,k]) > Abs(Matrix[m,k]) then
m := i;
// Перестановка строк
if m <> k then
for j := k to 7 do
begin
Temp := Matrix[k,j];
Matrix[k,j] := Matrix[m,j];
Matrix[m,j] := Temp;
end;
// Исключение переменной
for i := k+1 to 6 do
begin
Temp := Matrix[i,k]/Matrix[k,k];
for j := k to 7 do
Matrix[i,j] := Matrix[i,j] - Temp*Matrix[k,j];
end;
end;
// Обратный ход
for i := 6 downto 1 do
begin
Solution[i] := Matrix[i,7];
for j := i+1 to 6 do
Solution[i] := Solution[i] - Matrix[i,j]*Solution[j];
Solution[i] := Solution[i]/Matrix[i,i];
end;
end;
var
x, y, z: array[1..N] of Double;
// Основные суммы
Sx, Sy, Sz, Sx2, Sy2, Sxy, Sxz, Syz: Double;
// Дополнительные суммы
Sx3, Sy3, Sx2y, Sxy2, Sx4, Sy4, Sx2y2, Sx3y, Sxy3, Sx2z, Sxyz, Sy2z: Double;
A, B, C, D, E, F: Double;
Matrix: TMatrix;
Solution: TVector;
i: Integer;
begin
// Инициализация данных (правильный способ)
// Строка 1 (y=1)
x[1] := 0; y[1] := 1; z[1] := 8;
x[2] := 1; y[2] := 1; z[2] := 15;
x[3] := 2; y[3] := 1; z[3] := 26;
x[4] := 3; y[4] := 1; z[4] := 41;
x[5] := 4; y[5] := 1; z[5] := 60;
// Строка 2 (y=2)
x[6] := 0; y[6] := 2; z[6] := 11;
x[7] := 1; y[7] := 2; z[7] := 19;
x[8] := 2; y[8] := 2; z[8] := 31;
x[9] := 3; y[9] := 2; z[9] := 47;
x[10] := 4; y[10] := 2; z[10] := 67;
// Строка 3 (y=3)
x[11] := 0; y[11] := 3; z[11] := 14;
x[12] := 1; y[12] := 3; z[12] := 23;
x[13] := 2; y[13] := 3; z[13] := 36;
x[14] := 3; y[14] := 3; z[14] := 53;
x[15] := 4; y[15] := 3; z[15] := 74;
// Строка 4 (y=4)
x[16] := 0; y[16] := 4; z[16] := 17;
x[17] := 1; y[17] := 4; z[17] := 27;
x[18] := 2; y[18] := 4; z[18] := 41;
x[19] := 3; y[19] := 4; z[19] := 59;
x[20] := 4; y[20] := 4; z[20] := 81;
// Строка 5 (y=5)
x[21] := 0; y[21] := 5; z[21] := 20;
x[22] := 1; y[22] := 5; z[22] := 31;
x[23] := 2; y[23] := 5; z[23] := 46;
x[24] := 3; y[24] := 5; z[24] := 65;
x[25] := 4; y[25] := 5; z[25] := 88;
// Обнуление всех сумм
Sx := 0; Sy := 0; Sz := 0;
Sx2 := 0; Sy2 := 0; Sxy := 0;
Sxz := 0; Syz := 0;
Sx3 := 0; Sy3 := 0;
Sx2y := 0; Sxy2 := 0;
Sx4 := 0; Sy4 := 0;
Sx2y2 := 0;
Sx3y := 0; Sxy3 := 0;
Sx2z := 0; Sxyz := 0; Sy2z := 0;
// Вычисление всех необходимых сумм
for i := 1 to N do
begin
Sx := Sx + x[i];
Sy := Sy + y[i];
Sz := Sz + z[i];
Sx2 := Sx2 + x[i]*x[i];
Sy2 := Sy2 + y[i]*y[i];
Sxy := Sxy + x[i]*y[i];
Sxz := Sxz + x[i]*z[i];
Syz := Syz + y[i]*z[i];
Sx3 := Sx3 + x[i]*x[i]*x[i];
Sy3 := Sy3 + y[i]*y[i]*y[i];
Sx2y := Sx2y + x[i]*x[i]*y[i];
Sxy2 := Sxy2 + x[i]*y[i]*y[i];
Sx4 := Sx4 + x[i]*x[i]*x[i]*x[i];
Sy4 := Sy4 + y[i]*y[i]*y[i]*y[i];
Sx2y2 := Sx2y2 + x[i]*x[i]*y[i]*y[i];
Sx3y := Sx3y + x[i]*x[i]*x[i]*y[i];
Sxy3 := Sxy3 + x[i]*y[i]*y[i]*y[i];
Sx2z := Sx2z + x[i]*x[i]*z[i];
Sxyz := Sxyz + x[i]*y[i]*z[i];
Sy2z := Sy2z + y[i]*y[i]*z[i];
end;
// Формирование системы уравнений
Matrix[1,1] := N; Matrix[1,2] := Sx; Matrix[1,3] := Sy; Matrix[1,4] := Sx2; Matrix[1,5] := Sxy; Matrix[1,6] := Sy2; Matrix[1,7] := Sz;
Matrix[2,1] := Sx; Matrix[2,2] := Sx2; Matrix[2,3] := Sxy; Matrix[2,4] := Sx3; Matrix[2,5] := Sx2y; Matrix[2,6] := Sxy2; Matrix[2,7] := Sxz;
Matrix[3,1] := Sy; Matrix[3,2] := Sxy; Matrix[3,3] := Sy2; Matrix[3,4] := Sxy2; Matrix[3,5] := Sy3; Matrix[3,6] := Sx2y; Matrix[3,7] := Syz;
Matrix[4,1] := Sx2; Matrix[4,2] := Sx3; Matrix[4,3] := Sx2y; Matrix[4,4] := Sx4; Matrix[4,5] := Sx3y; Matrix[4,6] := Sx2y2; Matrix[4,7] := Sx2z;
Matrix[5,1] := Sxy; Matrix[5,2] := Sx2y; Matrix[5,3] := Sy3; Matrix[5,4] := Sx3y; Matrix[5,5] := Sx2y2; Matrix[5,6] := Sxy3; Matrix[5,7] := Sxyz;
Matrix[6,1] := Sy2; Matrix[6,2] := Sxy2; Matrix[6,3] := Sx2y; Matrix[6,4] := Sx2y2; Matrix[6,5] := Sxy3; Matrix[6,6] := Sy4; Matrix[6,7] := Sy2z;
// Решение системы
SolveLinearSystem(Matrix, Solution);
// Присвоение коэффициентов
A := Solution[1];
B := Solution[2];
C := Solution[3];
D := Solution[4];
E := Solution[5];
F := Solution[6];
// Вывод результатов
Writeln('Коэффициенты функции F(x,y) = A + Bx + Cy + Dx² + Exy + Fy²:');
Writeln('A = ', A:0:6);
Writeln('B = ', B:0:6);
Writeln('C = ', C:0:6);
Writeln('D = ', D:0:6);
Writeln('E = ', E:0:6);
Writeln('F = ', F:0:6);
end.
cHJvZ3JhbSBRdWFkcmF0aWNGaXQ7Cgp1c2VzCiAgU3lzVXRpbHMsIE1hdGg7Cgpjb25zdAogIE4gPSAyNTsgLy8gNXg1INGC0L7Rh9C10Log0LTQsNC90L3Ri9GFCgp0eXBlCiAgVE1hdHJpeCA9IGFycmF5WzEuLjYsIDEuLjddIG9mIERvdWJsZTsKICBUVmVjdG9yID0gYXJyYXlbMS4uNl0gb2YgRG91YmxlOwoKcHJvY2VkdXJlIFNvbHZlTGluZWFyU3lzdGVtKHZhciBNYXRyaXg6IFRNYXRyaXg7IHZhciBTb2x1dGlvbjogVFZlY3Rvcik7CnZhcgogIGksIGosIGssIG06IEludGVnZXI7CiAgVGVtcDogRG91YmxlOwpiZWdpbgogIC8vINCc0LXRgtC+0LQg0JPQsNGD0YHRgdCwINGBINCy0YvQsdC+0YDQvtC8INCz0LvQsNCy0L3QvtCz0L4g0Y3Qu9C10LzQtdC90YLQsAogIGZvciBrIDo9IDEgdG8gNiBkbwogIGJlZ2luCiAgICAvLyDQktGL0LHQvtGAINCz0LvQsNCy0L3QvtCz0L4g0Y3Qu9C10LzQtdC90YLQsAogICAgbSA6PSBrOwogICAgZm9yIGkgOj0gaysxIHRvIDYgZG8KICAgICAgaWYgQWJzKE1hdHJpeFtpLGtdKSA+IEFicyhNYXRyaXhbbSxrXSkgdGhlbgogICAgICAgIG0gOj0gaTsKICAgIAogICAgLy8g0J/QtdGA0LXRgdGC0LDQvdC+0LLQutCwINGB0YLRgNC+0LoKICAgIGlmIG0gPD4gayB0aGVuCiAgICAgIGZvciBqIDo9IGsgdG8gNyBkbwogICAgICBiZWdpbgogICAgICAgIFRlbXAgOj0gTWF0cml4W2ssal07CiAgICAgICAgTWF0cml4W2ssal0gOj0gTWF0cml4W20sal07CiAgICAgICAgTWF0cml4W20sal0gOj0gVGVtcDsKICAgICAgZW5kOwoKICAgIC8vINCY0YHQutC70Y7Rh9C10L3QuNC1INC/0LXRgNC10LzQtdC90L3QvtC5CiAgICBmb3IgaSA6PSBrKzEgdG8gNiBkbwogICAgYmVnaW4KICAgICAgVGVtcCA6PSBNYXRyaXhbaSxrXS9NYXRyaXhbayxrXTsKICAgICAgZm9yIGogOj0gayB0byA3IGRvCiAgICAgICAgTWF0cml4W2ksal0gOj0gTWF0cml4W2ksal0gLSBUZW1wKk1hdHJpeFtrLGpdOwogICAgZW5kOwogIGVuZDsKCiAgLy8g0J7QsdGA0LDRgtC90YvQuSDRhdC+0LQKICBmb3IgaSA6PSA2IGRvd250byAxIGRvCiAgYmVnaW4KICAgIFNvbHV0aW9uW2ldIDo9IE1hdHJpeFtpLDddOwogICAgZm9yIGogOj0gaSsxIHRvIDYgZG8KICAgICAgU29sdXRpb25baV0gOj0gU29sdXRpb25baV0gLSBNYXRyaXhbaSxqXSpTb2x1dGlvbltqXTsKICAgIFNvbHV0aW9uW2ldIDo9IFNvbHV0aW9uW2ldL01hdHJpeFtpLGldOwogIGVuZDsKZW5kOwoKdmFyCiAgeCwgeSwgejogYXJyYXlbMS4uTl0gb2YgRG91YmxlOwogIC8vINCe0YHQvdC+0LLQvdGL0LUg0YHRg9C80LzRiwogIFN4LCBTeSwgU3osIFN4MiwgU3kyLCBTeHksIFN4eiwgU3l6OiBEb3VibGU7CiAgLy8g0JTQvtC/0L7Qu9C90LjRgtC10LvRjNC90YvQtSDRgdGD0LzQvNGLCiAgU3gzLCBTeTMsIFN4MnksIFN4eTIsIFN4NCwgU3k0LCBTeDJ5MiwgU3gzeSwgU3h5MywgU3gyeiwgU3h5eiwgU3kyejogRG91YmxlOwogIEEsIEIsIEMsIEQsIEUsIEY6IERvdWJsZTsKICBNYXRyaXg6IFRNYXRyaXg7CiAgU29sdXRpb246IFRWZWN0b3I7CiAgaTogSW50ZWdlcjsKYmVnaW4KICAvLyDQmNC90LjRhtC40LDQu9C40LfQsNGG0LjRjyDQtNCw0L3QvdGL0YUgKNC/0YDQsNCy0LjQu9GM0L3Ri9C5INGB0L/QvtGB0L7QsSkKICAvLyDQodGC0YDQvtC60LAgMSAoeT0xKQogIHhbMV0gOj0gMDsgeVsxXSA6PSAxOyB6WzFdIDo9IDg7CiAgeFsyXSA6PSAxOyB5WzJdIDo9IDE7IHpbMl0gOj0gMTU7CiAgeFszXSA6PSAyOyB5WzNdIDo9IDE7IHpbM10gOj0gMjY7CiAgeFs0XSA6PSAzOyB5WzRdIDo9IDE7IHpbNF0gOj0gNDE7CiAgeFs1XSA6PSA0OyB5WzVdIDo9IDE7IHpbNV0gOj0gNjA7CiAgCiAgLy8g0KHRgtGA0L7QutCwIDIgKHk9MikKICB4WzZdIDo9IDA7IHlbNl0gOj0gMjsgels2XSA6PSAxMTsKICB4WzddIDo9IDE7IHlbN10gOj0gMjsgels3XSA6PSAxOTsKICB4WzhdIDo9IDI7IHlbOF0gOj0gMjsgels4XSA6PSAzMTsKICB4WzldIDo9IDM7IHlbOV0gOj0gMjsgels5XSA6PSA0NzsKICB4WzEwXSA6PSA0OyB5WzEwXSA6PSAyOyB6WzEwXSA6PSA2NzsKICAKICAvLyDQodGC0YDQvtC60LAgMyAoeT0zKQogIHhbMTFdIDo9IDA7IHlbMTFdIDo9IDM7IHpbMTFdIDo9IDE0OwogIHhbMTJdIDo9IDE7IHlbMTJdIDo9IDM7IHpbMTJdIDo9IDIzOwogIHhbMTNdIDo9IDI7IHlbMTNdIDo9IDM7IHpbMTNdIDo9IDM2OwogIHhbMTRdIDo9IDM7IHlbMTRdIDo9IDM7IHpbMTRdIDo9IDUzOwogIHhbMTVdIDo9IDQ7IHlbMTVdIDo9IDM7IHpbMTVdIDo9IDc0OwogIAogIC8vINCh0YLRgNC+0LrQsCA0ICh5PTQpCiAgeFsxNl0gOj0gMDsgeVsxNl0gOj0gNDsgelsxNl0gOj0gMTc7CiAgeFsxN10gOj0gMTsgeVsxN10gOj0gNDsgelsxN10gOj0gMjc7CiAgeFsxOF0gOj0gMjsgeVsxOF0gOj0gNDsgelsxOF0gOj0gNDE7CiAgeFsxOV0gOj0gMzsgeVsxOV0gOj0gNDsgelsxOV0gOj0gNTk7CiAgeFsyMF0gOj0gNDsgeVsyMF0gOj0gNDsgelsyMF0gOj0gODE7CiAgCiAgLy8g0KHRgtGA0L7QutCwIDUgKHk9NSkKICB4WzIxXSA6PSAwOyB5WzIxXSA6PSA1OyB6WzIxXSA6PSAyMDsKICB4WzIyXSA6PSAxOyB5WzIyXSA6PSA1OyB6WzIyXSA6PSAzMTsKICB4WzIzXSA6PSAyOyB5WzIzXSA6PSA1OyB6WzIzXSA6PSA0NjsKICB4WzI0XSA6PSAzOyB5WzI0XSA6PSA1OyB6WzI0XSA6PSA2NTsKICB4WzI1XSA6PSA0OyB5WzI1XSA6PSA1OyB6WzI1XSA6PSA4ODsKCiAgLy8g0J7QsdC90YPQu9C10L3QuNC1INCy0YHQtdGFINGB0YPQvNC8CiAgU3ggOj0gMDsgU3kgOj0gMDsgU3ogOj0gMDsKICBTeDIgOj0gMDsgU3kyIDo9IDA7IFN4eSA6PSAwOwogIFN4eiA6PSAwOyBTeXogOj0gMDsKICBTeDMgOj0gMDsgU3kzIDo9IDA7CiAgU3gyeSA6PSAwOyBTeHkyIDo9IDA7CiAgU3g0IDo9IDA7IFN5NCA6PSAwOwogIFN4MnkyIDo9IDA7CiAgU3gzeSA6PSAwOyBTeHkzIDo9IDA7CiAgU3gyeiA6PSAwOyBTeHl6IDo9IDA7IFN5MnogOj0gMDsKCiAgLy8g0JLRi9GH0LjRgdC70LXQvdC40LUg0LLRgdC10YUg0L3QtdC+0LHRhdC+0LTQuNC80YvRhSDRgdGD0LzQvAogIGZvciBpIDo9IDEgdG8gTiBkbwogIGJlZ2luCiAgICBTeCA6PSBTeCArIHhbaV07CiAgICBTeSA6PSBTeSArIHlbaV07CiAgICBTeiA6PSBTeiArIHpbaV07CiAgICBTeDIgOj0gU3gyICsgeFtpXSp4W2ldOwogICAgU3kyIDo9IFN5MiArIHlbaV0qeVtpXTsKICAgIFN4eSA6PSBTeHkgKyB4W2ldKnlbaV07CiAgICBTeHogOj0gU3h6ICsgeFtpXSp6W2ldOwogICAgU3l6IDo9IFN5eiArIHlbaV0qeltpXTsKICAgIFN4MyA6PSBTeDMgKyB4W2ldKnhbaV0qeFtpXTsKICAgIFN5MyA6PSBTeTMgKyB5W2ldKnlbaV0qeVtpXTsKICAgIFN4MnkgOj0gU3gyeSArIHhbaV0qeFtpXSp5W2ldOwogICAgU3h5MiA6PSBTeHkyICsgeFtpXSp5W2ldKnlbaV07CiAgICBTeDQgOj0gU3g0ICsgeFtpXSp4W2ldKnhbaV0qeFtpXTsKICAgIFN5NCA6PSBTeTQgKyB5W2ldKnlbaV0qeVtpXSp5W2ldOwogICAgU3gyeTIgOj0gU3gyeTIgKyB4W2ldKnhbaV0qeVtpXSp5W2ldOwogICAgU3gzeSA6PSBTeDN5ICsgeFtpXSp4W2ldKnhbaV0qeVtpXTsKICAgIFN4eTMgOj0gU3h5MyArIHhbaV0qeVtpXSp5W2ldKnlbaV07CiAgICBTeDJ6IDo9IFN4MnogKyB4W2ldKnhbaV0qeltpXTsKICAgIFN4eXogOj0gU3h5eiArIHhbaV0qeVtpXSp6W2ldOwogICAgU3kyeiA6PSBTeTJ6ICsgeVtpXSp5W2ldKnpbaV07CiAgZW5kOwoKICAvLyDQpNC+0YDQvNC40YDQvtCy0LDQvdC40LUg0YHQuNGB0YLQtdC80Ysg0YPRgNCw0LLQvdC10L3QuNC5CiAgTWF0cml4WzEsMV0gOj0gTjsgICAgTWF0cml4WzEsMl0gOj0gU3g7ICAgTWF0cml4WzEsM10gOj0gU3k7ICAgTWF0cml4WzEsNF0gOj0gU3gyOyAgTWF0cml4WzEsNV0gOj0gU3h5OyAgTWF0cml4WzEsNl0gOj0gU3kyOyAgTWF0cml4WzEsN10gOj0gU3o7CiAgTWF0cml4WzIsMV0gOj0gU3g7ICAgTWF0cml4WzIsMl0gOj0gU3gyOyAgTWF0cml4WzIsM10gOj0gU3h5OyAgTWF0cml4WzIsNF0gOj0gU3gzOyAgTWF0cml4WzIsNV0gOj0gU3gyeTsgTWF0cml4WzIsNl0gOj0gU3h5MjsgTWF0cml4WzIsN10gOj0gU3h6OwogIE1hdHJpeFszLDFdIDo9IFN5OyAgIE1hdHJpeFszLDJdIDo9IFN4eTsgIE1hdHJpeFszLDNdIDo9IFN5MjsgIE1hdHJpeFszLDRdIDo9IFN4eTI7IE1hdHJpeFszLDVdIDo9IFN5MzsgIE1hdHJpeFszLDZdIDo9IFN4Mnk7IE1hdHJpeFszLDddIDo9IFN5ejsKICBNYXRyaXhbNCwxXSA6PSBTeDI7ICBNYXRyaXhbNCwyXSA6PSBTeDM7ICBNYXRyaXhbNCwzXSA6PSBTeDJ5OyBNYXRyaXhbNCw0XSA6PSBTeDQ7ICBNYXRyaXhbNCw1XSA6PSBTeDN5OyBNYXRyaXhbNCw2XSA6PSBTeDJ5MjsgTWF0cml4WzQsN10gOj0gU3gyejsKICBNYXRyaXhbNSwxXSA6PSBTeHk7ICBNYXRyaXhbNSwyXSA6PSBTeDJ5OyBNYXRyaXhbNSwzXSA6PSBTeTM7ICBNYXRyaXhbNSw0XSA6PSBTeDN5OyBNYXRyaXhbNSw1XSA6PSBTeDJ5MjsgTWF0cml4WzUsNl0gOj0gU3h5MzsgTWF0cml4WzUsN10gOj0gU3h5ejsKICBNYXRyaXhbNiwxXSA6PSBTeTI7ICBNYXRyaXhbNiwyXSA6PSBTeHkyOyBNYXRyaXhbNiwzXSA6PSBTeDJ5OyBNYXRyaXhbNiw0XSA6PSBTeDJ5MjsgTWF0cml4WzYsNV0gOj0gU3h5MzsgTWF0cml4WzYsNl0gOj0gU3k0OyAgTWF0cml4WzYsN10gOj0gU3kyejsKCiAgLy8g0KDQtdGI0LXQvdC40LUg0YHQuNGB0YLQtdC80YsKICBTb2x2ZUxpbmVhclN5c3RlbShNYXRyaXgsIFNvbHV0aW9uKTsKCiAgLy8g0J/RgNC40YHQstC+0LXQvdC40LUg0LrQvtGN0YTRhNC40YbQuNC10L3RgtC+0LIKICBBIDo9IFNvbHV0aW9uWzFdOwogIEIgOj0gU29sdXRpb25bMl07CiAgQyA6PSBTb2x1dGlvblszXTsKICBEIDo9IFNvbHV0aW9uWzRdOwogIEUgOj0gU29sdXRpb25bNV07CiAgRiA6PSBTb2x1dGlvbls2XTsKCiAgLy8g0JLRi9Cy0L7QtCDRgNC10LfRg9C70YzRgtCw0YLQvtCyCiAgV3JpdGVsbign0JrQvtGN0YTRhNC40YbQuNC10L3RgtGLINGE0YPQvdC60YbQuNC4IEYoeCx5KSA9IEEgKyBCeCArIEN5ICsgRHjCsiArIEV4eSArIEZ5wrI6Jyk7CiAgV3JpdGVsbignQSA9ICcsIEE6MDo2KTsKICBXcml0ZWxuKCdCID0gJywgQjowOjYpOwogIFdyaXRlbG4oJ0MgPSAnLCBDOjA6Nik7CiAgV3JpdGVsbignRCA9ICcsIEQ6MDo2KTsKICBXcml0ZWxuKCdFID0gJywgRTowOjYpOwogIFdyaXRlbG4oJ0YgPSAnLCBGOjA6Nik7CmVuZC4=