#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long int
const int MOD = 1000000007;
const int MOD2 = 998244353;
const int INF = LLONG_MAX / 2;
const int MAXN = 100000;
int primes[1000000];
/*void seive() {
fill(primes, primes + 1000000, 1);
primes[0] = primes[1] = 0;
for (int i = 2; i * i < 1000000; i++) {
if (primes[i]) {
for (int j = i * i; j < 1000000; j += i) {
primes[j] = 0;
}
}
}
}
bool isPrime(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
int gcd(int a, int b) {
if (a == 0) return b;
return gcd(b % a, a);
}
int power(int a, int b, int mod) {
int res = 1;
a %= mod;
while (b > 0) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
// nCr % MOD for n < MOD
int nCrModP(int n, int r) {
if (r > n) return 0;
if (r == 0 || r == n) return 1;
int numerator = 1, denominator = 1;
for (int i = 0; i < r; i++) {
numerator = (numerator * (n - i)) % MOD;
denominator = (denominator * (i + 1)) % MOD;
}
return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
}
// Lucas's Theorem
int lucas(int n, int r) {
if (r == 0) return 1;
return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
}*/
void solve() {
int n,k;
cin>>n>>k;
int A[n];
for(int i = 0 ; i<n ; i++){
cin>>A[i];
}
stack<pair<int,int>>st,st3;
int NGL[n],NGR2[n];
for(int i = 0 ; i<n ; i++){
while(!st.empty() && st.top().first<=A[i]){
st.pop();
}
if(st.empty()){
NGL[i] = -1;
}
else{
NGL[i] = st.top().second;
}
st.push({A[i],i});
}
for(int i = n-1 ; i>=0 ; i--){
while(!st3.empty() && st3.top().first<A[i]){
st3.pop();
}
if(st3.empty()){
NGR2[i] = n;
}
else{
NGR2[i] = st3.top().second;
}
st3.push({A[i],i});
}
int sum = 0;
for(int i = 0 ; i<n ; i++){
if(A[i]==k){
int x = (i-NGL[i]-1);
int y = (NGR2[i]-i-1);
sum += ((x*y)+x+y+1);
}
}
cout<<sum<<endl;
}
signed main() {
ios::sync_with_stdio(false); cin.tie(NULL);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}
I2luY2x1ZGU8Yml0cy9zdGRjKysuaD4KdXNpbmcgbmFtZXNwYWNlIHN0ZDsKI2RlZmluZSBlbmRsICdcbicKI2RlZmluZSBpbnQgbG9uZyBsb25nIGludApjb25zdCBpbnQgTU9EID0gMTAwMDAwMDAwNzsKY29uc3QgaW50IE1PRDIgPSA5OTgyNDQzNTM7CmNvbnN0IGludCBJTkYgPSBMTE9OR19NQVggLyAyOwpjb25zdCBpbnQgTUFYTiA9IDEwMDAwMDsKaW50IHByaW1lc1sxMDAwMDAwXTsKCi8qdm9pZCBzZWl2ZSgpIHsKICAgIGZpbGwocHJpbWVzLCBwcmltZXMgKyAxMDAwMDAwLCAxKTsKICAgIHByaW1lc1swXSA9IHByaW1lc1sxXSA9IDA7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPCAxMDAwMDAwOyBpKyspIHsKICAgICAgICBpZiAocHJpbWVzW2ldKSB7CiAgICAgICAgICAgIGZvciAoaW50IGogPSBpICogaTsgaiA8IDEwMDAwMDA7IGogKz0gaSkgewogICAgICAgICAgICAgICAgcHJpbWVzW2pdID0gMDsKICAgICAgICAgICAgfQogICAgICAgIH0KICAgIH0KfQoKYm9vbCBpc1ByaW1lKGludCBuKSB7CiAgICBpZiAobiA8PSAxKSByZXR1cm4gZmFsc2U7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPD0gbjsgaSsrKSB7CiAgICAgICAgaWYgKG4gJSBpID09IDApIHJldHVybiBmYWxzZTsKICAgIH0KICAgIHJldHVybiB0cnVlOwp9CgppbnQgZ2NkKGludCBhLCBpbnQgYikgewogICAgaWYgKGEgPT0gMCkgcmV0dXJuIGI7CiAgICByZXR1cm4gZ2NkKGIgJSBhLCBhKTsKfQoKaW50IHBvd2VyKGludCBhLCBpbnQgYiwgaW50IG1vZCkgewogICAgaW50IHJlcyA9IDE7CiAgICBhICU9IG1vZDsKICAgIHdoaWxlIChiID4gMCkgewogICAgICAgIGlmIChiICYgMSkgcmVzID0gcmVzICogYSAlIG1vZDsKICAgICAgICBhID0gYSAqIGEgJSBtb2Q7CiAgICAgICAgYiA+Pj0gMTsKICAgIH0KICAgIHJldHVybiByZXM7Cn0KCi8vIG5DciAlIE1PRCBmb3IgbiA8IE1PRAppbnQgbkNyTW9kUChpbnQgbiwgaW50IHIpIHsKICAgIGlmIChyID4gbikgcmV0dXJuIDA7CiAgICBpZiAociA9PSAwIHx8IHIgPT0gbikgcmV0dXJuIDE7CgogICAgaW50IG51bWVyYXRvciA9IDEsIGRlbm9taW5hdG9yID0gMTsKICAgIGZvciAoaW50IGkgPSAwOyBpIDwgcjsgaSsrKSB7CiAgICAgICAgbnVtZXJhdG9yID0gKG51bWVyYXRvciAqIChuIC0gaSkpICUgTU9EOwogICAgICAgIGRlbm9taW5hdG9yID0gKGRlbm9taW5hdG9yICogKGkgKyAxKSkgJSBNT0Q7CiAgICB9CiAgICByZXR1cm4gKG51bWVyYXRvciAqIHBvd2VyKGRlbm9taW5hdG9yLCBNT0QgLSAyLCBNT0QpKSAlIE1PRDsKfQoKLy8gTHVjYXMncyBUaGVvcmVtCmludCBsdWNhcyhpbnQgbiwgaW50IHIpIHsKICAgIGlmIChyID09IDApIHJldHVybiAxOwogICAgcmV0dXJuIChsdWNhcyhuIC8gTU9ELCByIC8gTU9EKSAqIG5Dck1vZFAobiAlIE1PRCwgciAlIE1PRCkpICUgTU9EOwp9Ki8KCnZvaWQgc29sdmUoKSB7CiAgICBpbnQgbixrOwogICAgY2luPj5uPj5rOwogICAgaW50IEFbbl07CiAgICBmb3IoaW50IGkgPSAwIDsgaTxuIDsgaSsrKXsKICAgICAgICBjaW4+PkFbaV07CiAgICB9CiAgICBzdGFjazxwYWlyPGludCxpbnQ+PnN0LHN0MzsKICAgIGludCBOR0xbbl0sTkdSMltuXTsKICAgIGZvcihpbnQgaSA9IDAgOyBpPG4gOyBpKyspewogICAgICAgIHdoaWxlKCFzdC5lbXB0eSgpICYmIHN0LnRvcCgpLmZpcnN0PD1BW2ldKXsKICAgICAgICAgICBzdC5wb3AoKTsKICAgICAgICB9CiAgICAgICAgaWYoc3QuZW1wdHkoKSl7CiAgICAgICAgICAgIE5HTFtpXSA9IC0xOwogICAgICAgIH0KICAgICAgICBlbHNlewogICAgICAgICAgICBOR0xbaV0gPSBzdC50b3AoKS5zZWNvbmQ7CiAgICAgICAgfQogICAgICAgIHN0LnB1c2goe0FbaV0saX0pOwogICAgfQogICAgZm9yKGludCBpID0gbi0xIDsgaT49MCA7IGktLSl7CiAgICAgICAgd2hpbGUoIXN0My5lbXB0eSgpICYmIHN0My50b3AoKS5maXJzdDxBW2ldKXsKICAgICAgICAgICAgc3QzLnBvcCgpOwogICAgICAgIH0KICAgICAgICBpZihzdDMuZW1wdHkoKSl7CiAgICAgICAgICAgIE5HUjJbaV0gPSBuOwogICAgICAgIH0KICAgICAgICBlbHNlewogICAgICAgICAgICBOR1IyW2ldID0gc3QzLnRvcCgpLnNlY29uZDsKICAgICAgICB9CiAgICAgICAgc3QzLnB1c2goe0FbaV0saX0pOwogICAgfQogICAgaW50IHN1bSA9IDA7CiAgICBmb3IoaW50IGkgPSAwIDsgaTxuIDsgaSsrKXsKICAgICAgICBpZihBW2ldPT1rKXsKICAgICAgICAgICAgaW50IHggPSAoaS1OR0xbaV0tMSk7CiAgICAgICAgICAgIGludCB5ID0gKE5HUjJbaV0taS0xKTsKICAgICAgICAgICAgc3VtICs9ICgoeCp5KSt4K3krMSk7CiAgICAgICAgfQogICAgfQogICAgY291dDw8c3VtPDxlbmRsOwp9CnNpZ25lZCBtYWluKCkgewogICAgaW9zOjpzeW5jX3dpdGhfc3RkaW8oZmFsc2UpOyBjaW4udGllKE5VTEwpOwogICAgaW50IHQ7CiAgICBjaW4gPj4gdDsKICAgIHdoaWxlICh0LS0pIHsKICAgICAgICBzb2x2ZSgpOwogICAgfQogICAgcmV0dXJuIDA7Cn0K