fork download
  1. program QuadraticFit;
  2.  
  3. uses
  4. SysUtils, Math;
  5.  
  6. const
  7. N = 25; // 5x5 data points
  8.  
  9. type
  10. TMatrix = array[1..6, 1..7] of Double;
  11. TVector = array[1..6] of Double;
  12.  
  13. procedure SolveLinearSystem(var Matrix: TMatrix; var Solution: TVector);
  14. var
  15. i, j, k, m: Integer;
  16. Temp: Double;
  17. begin
  18. // Gaussian elimination with partial pivoting
  19. for k := 1 to 6 do
  20. begin
  21. // Find pivot
  22. m := k;
  23. for i := k+1 to 6 do
  24. if Abs(Matrix[i,k]) > Abs(Matrix[m,k]) then
  25. m := i;
  26.  
  27. // Swap rows
  28. if m <> k then
  29. for j := k to 7 do
  30. begin
  31. Temp := Matrix[k,j];
  32. Matrix[k,j] := Matrix[m,j];
  33. Matrix[m,j] := Temp;
  34. end;
  35.  
  36. // Eliminate column
  37. for i := k+1 to 6 do
  38. begin
  39. Temp := Matrix[i,k] / Matrix[k,k];
  40. for j := k to 7 do
  41. Matrix[i,j] := Matrix[i,j] - Temp * Matrix[k,j];
  42. end;
  43. end;
  44.  
  45. // Back substitution
  46. for i := 6 downto 1 do
  47. begin
  48. Solution[i] := Matrix[i,7];
  49. for j := i+1 to 6 do
  50. Solution[i] := Solution[i] - Matrix[i,j] * Solution[j];
  51. Solution[i] := Solution[i] / Matrix[i,i];
  52. end;
  53. end;
  54.  
  55. var
  56. x, y, z: array[1..N] of Double;
  57. Sx, Sy, Sz, Sx2, Sy2, Sxy, Sxz, Syz: Double;
  58. Sx3, Sy3, Sx2y, Sxy2, Sx4, Sy4, Sx2y2: Double;
  59. Sx3y, Sxy3, Sx2z, Sxyz, Sy2z: Double;
  60. A, B, C, D, E, F: Double;
  61. Matrix: TMatrix;
  62. Solution: TVector;
  63. i: Integer;
  64.  
  65. begin
  66.  
  67. x[1] := 0; y[1] := 1; z[1] := 5 + 4*0 + 3*1 + 2*0*0 + 0*1;
  68. x[2] := 1; y[2] := 1; z[2] := 5 + 4*1 + 3*1 + 2*1*1 + 1*1;
  69. x[3] := 2; y[3] := 1; z[3] := 5 + 4*2 + 3*1 + 2*2*2 + 2*1;
  70. x[4] := 3; y[4] := 1; z[4] := 5 + 4*3 + 3*1 + 2*3*3 + 3*1;
  71. x[5] := 4; y[5] := 1; z[5] := 5 + 4*4 + 3*1 + 2*4*4 + 4*1;
  72. x[6] := 0; y[6] := 2; z[6] := 5 + 4*0 + 3*2 + 2*0*0 + 0*2;
  73. x[7] := 1; y[7] := 2; z[7] := 5 + 4*1 + 3*2 + 2*1*1 + 1*2;
  74. x[8] := 2; y[8] := 2; z[8] := 5 + 4*2 + 3*2 + 2*2*2 + 2*2;
  75. x[9] := 3; y[9] := 2; z[9] := 5 + 4*3 + 3*2 + 2*3*3 + 3*2;
  76. x[10] := 4; y[10] := 2; z[10] := 5 + 4*4 + 3*2 + 2*4*4 + 4*2;
  77. x[11] := 0; y[11] := 3; z[11] := 5 + 4*0 + 3*3 + 2*0*0 + 0*3;
  78. x[12] := 1; y[12] := 3; z[12] := 5 + 4*1 + 3*3 + 2*1*1 + 1*3;
  79. x[13] := 2; y[13] := 3; z[13] := 5 + 4*2 + 3*3 + 2*2*2 + 2*3;
  80. x[14] := 3; y[14] := 3; z[14] := 5 + 4*3 + 3*3 + 2*3*3 + 3*3;
  81. x[15] := 4; y[15] := 3; z[15] := 5 + 4*4 + 3*3 + 2*4*4 + 4*3;
  82. x[16] := 0; y[16] := 4; z[16] := 5 + 4*0 + 3*4 + 2*0*0 + 0*4;
  83. x[17] := 1; y[17] := 4; z[17] := 5 + 4*1 + 3*4 + 2*1*1 + 1*4;
  84. x[18] := 2; y[18] := 4; z[18] := 5 + 4*2 + 3*4 + 2*2*2 + 2*4;
  85. x[19] := 3; y[19] := 4; z[19] := 5 + 4*3 + 3*4 + 2*3*3 + 3*4;
  86. x[20] := 4; y[20] := 4; z[20] := 5 + 4*4 + 3*4 + 2*4*4 + 4*4;
  87. x[21] := 0; y[21] := 5; z[21] := 5 + 4*0 + 3*5 + 2*0*0 + 0*5;
  88. x[22] := 1; y[22] := 5; z[22] := 5 + 4*1 + 3*5 + 2*1*1 + 1*5;
  89. x[23] := 2; y[23] := 5; z[23] := 5 + 4*2 + 3*5 + 2*2*2 + 2*5;
  90. x[24] := 3; y[24] := 5; z[24] := 5 + 4*3 + 3*5 + 2*3*3 + 3*5;
  91. x[25] := 4; y[25] := 5; z[25] := 5 + 4*4 + 3*5 + 2*4*4 + 4*5;
  92.  
  93. // Initialize sums
  94. Sx := 0; Sy := 0; Sz := 0; Sx2 := 0; Sy2 := 0; Sxy := 0; Sxz := 0; Syz := 0;
  95. Sx3 := 0; Sy3 := 0; Sx2y := 0; Sxy2 := 0; Sx4 := 0; Sy4 := 0; Sx2y2 := 0;
  96. Sx3y := 0; Sxy3 := 0; Sx2z := 0; Sxyz := 0; Sy2z := 0;
  97.  
  98. // Compute sums
  99. for i := 1 to N do
  100. begin
  101. Sx := Sx + x[i];
  102. Sy := Sy + y[i];
  103. Sz := Sz + z[i];
  104. Sx2 := Sx2 + x[i]*x[i];
  105. Sy2 := Sy2 + y[i]*y[i];
  106. Sxy := Sxy + x[i]*y[i];
  107. Sxz := Sxz + x[i]*z[i];
  108. Syz := Syz + y[i]*z[i];
  109. Sx3 := Sx3 + x[i]*x[i]*x[i];
  110. Sy3 := Sy3 + y[i]*y[i]*y[i];
  111. Sx2y := Sx2y + x[i]*x[i]*y[i];
  112. Sxy2 := Sxy2 + x[i]*y[i]*y[i];
  113. Sx4 := Sx4 + x[i]*x[i]*x[i]*x[i];
  114. Sy4 := Sy4 + y[i]*y[i]*y[i]*y[i];
  115. Sx2y2 := Sx2y2 + x[i]*x[i]*y[i]*y[i];
  116. Sx3y := Sx3y + x[i]*x[i]*x[i]*y[i];
  117. Sxy3 := Sxy3 + x[i]*y[i]*y[i]*y[i];
  118. Sx2z := Sx2z + x[i]*x[i]*z[i];
  119. Sxyz := Sxyz + x[i]*y[i]*z[i];
  120. Sy2z := Sy2z + y[i]*y[i]*z[i];
  121. end;
  122.  
  123.  
  124. Matrix[1,1] := N; Matrix[1,2] := Sx; Matrix[1,3] := Sy; Matrix[1,4] := Sx2; Matrix[1,5] := Sxy; Matrix[1,6] := Sy2; Matrix[1,7] := Sz;
  125. Matrix[2,1] := Sx; Matrix[2,2] := Sx2; Matrix[2,3] := Sxy; Matrix[2,4] := Sx3; Matrix[2,5] := Sx2y; Matrix[2,6] := Sxy2; Matrix[2,7] := Sxz;
  126. Matrix[3,1] := Sy; Matrix[3,2] := Sxy; Matrix[3,3] := Sy2; Matrix[3,4] := Sx2y; Matrix[3,5] := Sxy2; Matrix[3,6] := Sy3; Matrix[3,7] := Syz;
  127. Matrix[4,1] := Sx2; Matrix[4,2] := Sx3; Matrix[4,3] := Sx2y; Matrix[4,4] := Sx4; Matrix[4,5] := Sx3y; Matrix[4,6] := Sx2y2; Matrix[4,7] := Sx2z;
  128. Matrix[5,1] := Sxy; Matrix[5,2] := Sx2y; Matrix[5,3] := Sxy2; Matrix[5,4] := Sx3y; Matrix[5,5] := Sx2y2; Matrix[5,6] := Sxy3; Matrix[5,7] := Sxyz;
  129. Matrix[6,1] := Sy2; Matrix[6,2] := Sxy2; Matrix[6,3] := Sy3; Matrix[6,4] := Sx2y2; Matrix[6,5] := Sxy3; Matrix[6,6] := Sy4; Matrix[6,7] := Sy2z;
  130.  
  131.  
  132. SolveLinearSystem(Matrix, Solution);
  133.  
  134.  
  135. A := Solution[1];
  136. B := Solution[2];
  137. C := Solution[3];
  138. D := Solution[4];
  139. E := Solution[5];
  140. F := Solution[6];
  141.  
  142.  
  143. Writeln('Coefficients of F(x,y) = A + Bx + Cy + Dx^2 + Exy + Fy^2:');
  144. Writeln('A = ', A:0:6);
  145. Writeln('B = ', B:0:6);
  146. Writeln('C = ', C:0:6);
  147. Writeln('D = ', D:0:6);
  148. Writeln('E = ', E:0:6);
  149. Writeln('F = ', F:0:6);
  150. end.
Success #stdin #stdout 0s 5312KB
stdin
Standard input is empty
stdout
Coefficients of F(x,y) = A + Bx + Cy + Dx^2 + Exy + Fy^2:
A = 5.000000
B = 4.000000
C = 3.000000
D = 2.000000
E = 1.000000
F = -0.000000